Как построить Дом ?

Изделия на основе извести.


     Использование извести для получения прочных и водостойких искусственных каменных изделий долгое время не находило применения, так как в естественных условиях этот материал твердеет очень медленно, изделия на его основе имеют небольшую прочность (1–2 МПа) и легко размокают при действии воды.

     Механизм превращения известково-песчаной смеси из легко-размокающего и малопрочного материала в прочный и водостойкий камень заключается в следующем. При естественных условиях песок в известково-песчаных смесях инертен и не способен химически взаимодействовать с известью. Приобретение прочности известково-песчаными растворами в естественных условиях достигается главным образом за счет твердения извести. Однако в среде насыщенного пара (100 % влажности) и температуре 170 °C и выше кремнезем приобретает химическую активность и начинает быстро взаимодействовать с известью. Из известково-песчаных смесей делают крупноразмерные изделия для сборного строительства – блоки и панели для стен и перекрытий, а также штучные изделия – силикатный кирпич и камни для стен. Изготовление силикатных блоков и панелей аналогично производству железобетонных изделий.

Силикатный кирпич

     Силикатный кирпич по своей форме, размерам и основному назначению практически не отличается от керамического кирпича. Материалами для изготовления силикатного кирпича являются воздушная известь и кварцевый песок. Известь применяют в виде молотой негашеной, частично загашенной или гашеной гидратной, она должна характеризоваться быстрым гашением и не должна содержать более 5 % MgO. Пережог замедляет скорость гашения извести и даже вызывает появление в изделиях трещин, вспучиваний и других дефектов, поэтому для производства автоклавных силикатных изделий она не должна содержать пережога. Кварцевый песок в производстве силикатных изделий применяют немолотый или в виде смеси немолотого и тонкомолотого, а также грубомолотого с содержанием кремнезема не менее 70 %. Наличие примесей в песке отрицательно влияет на качество изделий: слюда понижает прочность, и ее содержание в песке не должно превышать 0,5 %; органические примеси вызывают вспучивание и также понижают прочность содержание в песке сернистых примесей ограничивается до 1 % в пересчете на S0 . Равномерно распределенные глинистые примеси допускаются в количестве не более 10 %; при умеренном содержании они даже несколько улучшают удобство укладки смеси. Однако крупные включения глины в песке не допускаются, так как снижают качество изделий. Состав известково-песчаной смеси для изготовления силикатного кирпича следующий: 92–95 % чистого кварцевого песка, 5–8 % воздушной извести и примерно 7 % воды.

     Производство силикатного кирпича ведут двумя методами – барабанным и силосным – отличающимися способом приготовлениея известково-песчаной смеси.

     При барабанном способе песок и тонкомолотая негашеная известь, получаемая измельчением в шаровой мельнице комовой извести, поступают в отдельные бункеры над гасильным барабаном. Из бункеров песок, дозируемый по объему, а известь – по массе, периодически загружаются в гасильный барабан. Последний герметически закрывают и в течение 3–5 мин производят перемешивание сухих материалов. При подаче пара под давлением 0,15– 0,2 МПа происходит гашение извести при непрерывно вращающемся барабане. Процесс гашения извести длится до 40 минут.

     При силосном способе предварительно перемешанную и увлажненную массу направляют для гашения в силосы. Гашение в силосах происходит 7—12 ч, т. е. в 10–15 раз дольше, чем в барабанах, что является существенным недостатком силосного способа. Хорошо загашенную в барабане или силосе известковопесчаную массу подают в лопастный смеситель или на бегуны для дополнительного увлажнения и перемешивания и далее на прессование. Прессование кирпича производят на механических прессах под давлением до 15–20 МПа, обеспечивающим получение плотного и прочного кирпича. Отформованный сырец укладывают на вагонетку, на которой полуфабрикат направляют в автоклав для твердения.

     Автоклав представляет собой стальной цилиндр диаметром 2 м и более, длиной до 20 м, с торцов герметически закрывающийся крышками. С повышением температуры ускоряется реакция между известью и песком, и при температуре 174 °C она протекает в течение 8—10 ч. Быстрое твердение происходит не только при высокой температуре, но и высокой влажности, для чего в автоклав пускают пар давлением до 0,8 МПа и это давление выдерживают 6–8 ч. Давление пара поднимают и снижают в течение 1,5 часа.

     Под действием высокой температуры и влажности происходит химическая реакция между известью и кремнеземом. Образующиеся в результате реакции гидросиликаты срастаются с зернами песка в прочный камень. Однако твердение силикатного кирпича на этом не прекращается, а продолжается после запаривания. Часть извести, вступившей в химическое взаимодействие с кремнеземом песка, реагирует с углекислотой воздуха, образуя прочный углекислый кальций по реакции Са(ОН) + С0 = СаС0 + Н 0.

     Силикатный кирпич выпускают размером 250x120x65 мм, марок 75, 100, 125, 150, 200, 250 и 300, водопоглощением 8—16 %, теплопроводностью 0,70—0,75 Вт/м град, плотностью свыше 1650 кг/м – несколько выше, чем плотность керамического кирпича; морозостойкостью F15. Теплоизоляционные качества стен из силикатного и керамического кирпича практически одинаковы.

     Применяют силикатный кирпич примерно для тех же целей, что и керамический, но с некоторыми ограничениями. Силикатный кирпич нельзя применять для кладки фундаментов и цоколей, так как он менее водостоек, а также для кладки печей и дымовых труб, так как при длительном воздействии высокой температуры происходит дегидратация гидросиликата кальция и гидрата оксида кальция, которые связывают зерна песка, и кирпич разрушается.

     С другой стороны, по технико-экономическим показателям во многом силикатный кирпич превосходит керамический. На его производство требуется в 2 раза меньше топлива, в 3 раза меньше электроэнергии, в 2,5 раза меньше трудоемкости производства; в конечном итоге себестоимость силикатного кирпича оказывается на 25–35 % ниже, чем керамического.

Известково-шлаковый и известково-зольный кирпич

     Известково-шлаковый и известково-зольный кирпичи являются разновидностью силикатного кирпича, однако отличаются от него меньшей плотностью и лучшими теплоизоляционными свойствами, так как в них тяжелый кварцевый песок заменен, соответственно, пористым легким шлаком и золой. Для приготовления известково-шлакового кирпича берут 3—12 % извести и 88–97 % шлака, а для известково-зольного – 20–25 % извести и 75–80 % золы. Так же как и шлак, зола является дешевым сырьевым материалом, образующимся при сжигании каменного, бурого угля и другого топлива в котельных ТЭЦ, ГРЭС и т. д. Использование шлаков и зол экономически выгодно, так как оно расширяет сырьевую базу силикатных и других строительных материалов и снижает их стоимость.

     Производство известково-шлакового и известково-зольного кирпича аналогично технологической схеме производства силикатного кирпича. Шлаковый и зольный кирпич выпускают размером 250x120x140 мм и больше, марками по прочности при сжатии 25, 50 и 75, морозостойкостью такой же, как и у силикатного кирпича, плотностью 1400–1600 кг/м , теплопроводностью 0,5–0,6 Вт/м град.

     Применяют известково-шлаковый и известково-зольный кирпич для возведения кладки стен зданий малой этажности (до трех этажей), а также для кладки стен верхних этажей многоэтажных зданий.

Крупноразмерные изделия из силикатного бетона

     Силикатным бетоном называют затвердевшую в автоклаве уплотненную смесь, состоящую из кварцевого песка (70–80 %), молотого песка (8—15 %) и молотой негашеной извести (6—10 %).

     Силикатные бетоны, как и цементные, могут быть тяжелыми (заполнители плотные – песок и щебень или песчано-гравийная смесь), легкими (заполнители пористые – керамзит, вспученный перлит, аглопорит и др.) и ячеистыми (заполнителем служат пузырьки воздуха, равномерно распределенные в объеме изделия). Вяжущим в силикатном бетоне является тонкомолотая известково-кремнеземистая смесь – известково-кремнеземистое вяжущее, способное при затворении водой в процессе тепловлажностной обработки в автоклаве образовывать высокопрочный искусственный камень.

     В качестве кремнеземистого компонента применяют молотый кварцевый песок, металлургические (главным образом доменные) шлаки, золы ТЭЦ. Кремнеземистый компонент (тонкомолотый песок) оказывает большое влияние на свойства силикатных бетонов. Так, с возрастанием дисперсности частиц молотого песка повышаются прочность, морозостойкость и другие свойства силикатных материалов.

     С увеличением тонкости помола песка повышается относительное содержание оксида кальция в смеси вяжущего до тех пор, пока содержание активного СаО обеспечивает возможность связывания его во время автоклавной обработки имеющимся песком в низкоосновные гидросиликаты кальция.

     Наибольшее практическое распространение получили тяжелые мелкозернистые бетоны плотностью 1800–2500 кг/м и прочностью 15, 20, 25, 30 и 40 МПа. При увеличении дисперсности и количества тонкомолотого кварцевого песка в смеси известково-кремнеземистого вяжущего, сильном уплотнении и соответствующем режиме автоклавной обработки можно получить силикатный бетон прочностью до 80 МПа.

     Прочность силикатного бетона при сжатии, изгибе и растяжении, составление деформации, сцепление с арматурой обеспечивают одинаковую несущую способность конструкций из силикатного и цементного бетона при одинаковых их размерах и степени армирования. Поэтому силикатный бетон можно использовать для армированных и предварительно напряженных конструкций, что ставит его в один ряд с цементным бетоном.

     Из плотных силикатных бетонов изготовляют несущие конструкции для жилищного, промышленного и сельского строительства: панели внутренних стен и перекрытий, лестничные марши и площадки, балки, прогоны и колонны, карнизные плиты и т. д. В последнее время тяжелые силикатные бетоны применяют для изготовления таких высокопрочных изделий, как прессованный безасбестовый шифер, напряженно-армированные силикатобетонные железнодорожные шпалы, армированные силикатобетонные тюбинги для отделки туннелей метро и для шахтного строительства (бетон прочностью 60 МПа и более).

     Коррозия арматуры в силикатном бетоне зависит от плотности бетона и условий службы конструкций; при нормальном режиме эксплуатации сооружений арматура в плотном силикатном бетоне не корродирует. При влажном и переменном режимах эксплуатации в конструкциях из плотного силикатного бетона арматуру необходимо защищать антикоррозионными обмазками.

     Силикатный бетон на пористых заполнителях — сравнительно новый вид легкого бетона. Твердение его происходит в автоклавах. Вяжущие для этих бетонов применяют те же, что и для плотных силикатных бетонов, а заполнителями служат пористые заполнители: керамзит, вспученный перлит, аглопорит, шлаковая пемза и другие пористые материалы в виде гравия и щебня. Из силикатного бетона изготовляют крупные стеновые блоки внутренних несущих стен панели перекрытий и несущих перегородок, ступени, плиты, балки. Элементы, работающие на изгиб, армируют стержнями и сетками.

     Технология изготовления силикатобетонных изделий состоит из следующих основных операций:

     добычи песка и отделения крупных фракций; добычи и обжига известняка (если известь производят на силикатном заводе), дробления извести;

     приготовления известково-песчаного вяжущего путем дозирования извести, песка и гипса и помола их в шаровых мельницах;

     приготовления силикатобетонной смеси путем смешивания немолотого песка с тонкомолотой известково-песчаной смесью и водой в бетоносмесителях с принудительным перемешиванием;

     формования изделий и их выдерживания; твердения отформованных изделий в автоклавах при температуре 174–200 °C и давлении насыщенного пара до 0,8–1,5 МПа. Для получения плотных силикатных изделий применяют известь с удельной поверхностью 4000–5000 см /г, а песок – 2000–2500 см /г.

     Изделия на основе молотой негашеной извести можно получить повышенной прочности и морозостойкости. Для этой цели регулируют сроки гидратации извести путем введения гипса, поверхностно-активных веществ и т. д. Молотую негашеную известь целесообразно применять для изделий, изготовленных на пластичной бетонной смеси. В таких свежесформованных изделиях гашение молотой извести не вызывает образования трещин, а увеличение объема способствует большему уплотнению изделия. Кроме того, при последующей гидратации негашеной извести гидрат оксида кальция, образующийся в уже отформованных изделиях, более активно взаимодействует с кремнеземом, чем тот же гидрат, ранее образовавшийся в гашеной извести. В очень уплотненных прессованием изделиях из жестких смесей гашение молотой негашеной извести может привести к образованию трещин, поэтому с увеличением степени уплотнения целесообразно проводить частичное гашение извести путем совместного ее помола с влажным песком или предварительное выдерживание известково-песчаной смеси, как это предусматривается при производстве силикатного кирпича.

Ячеистые силикатные изделия

     Ячеистые силикатные изделия отличаются малой плотностью и низкой теплопроводностью. Они бывают двух видов: пеносиликатные и газосиликатные. Пеносиликатные изделия изготовляют из смеси извести (до 25 %) и молотого песка (иногда берут определенную часть немолотого песка). Молотый песок можно заменить измельченным шлаком или золой. Производство пеносиликатных изделий отличается от производства других известково-песчаных смесей добавкой пенообразователя: клееканифольного, состоящего из костного или мездрового клея, канифоли, едкого натра и воды. В газосиликатных изделиях образование ячеистой структуры происходит при введении в приготовленную смесь алюминиевой пудры.

     Технологическая схема производства ячеистых силикатных пеноблоков состоит из следующих основных операций: приготовления известково-песчаного вяжущего совместным помолом извести и части песка (количество песка берут в пределах 20–50 % от массы извести); измельчения песка по сухому или мокрому способу; приготовления пено– или газобетонной массы; формования изделия. Приготовленную массу заливают в металлические формы с уложенными арматурными каркасами и закладными деталями. В формах газосиликатная масса вспучивается, образуя горбушку, которая затем срезается. В настоящее время на заводах ячеистого бетона все большее применение получает комплексная виброрезательная технология, которая позволяет управлять процессами структурообразования. Она имеет ряд технико-экономических преимуществ по сравнению с литьевой технологией: сокращается цикл приготовления смеси, улучшаются свойства ячеистых бетонов, снижается влажность готовых изделий.

     Изделия из ячеистых бетонов изготовляют армированными и неармированными. В армированных силикатных бетонах стальная арматура, а также закладные детали больше подвержены коррозии, чем в цементных бетонах. Поэтому стальную арматуру в ячеистых изделиях покрывают цементно-казеиновыми, полимерцементными составами, а также применяют металлизацию арматурной стали.

     Ячеистые силикатные бетоны делят на теплоизоляционные , имеющие плотность до 500 кг/м и прочность при сжатии до 25 МПа, конструктивно-теплоизоляционные плотностью 500–800 кг/м и прочностью при сжатии 2,5–7,5 МПа и конструктивные плотностью выше 850 кг/м и прочностью 7,5—15,0 МПа. Изделия из ячеистого силикатного бетона достаточно морозостойки.

     Применяют ячеистые силикатные изделия для возведения наружных стен зданий, перегородок, а также для покрытий промышленных зданий.