Как построить Дом ?

Цементы.


Кислотоупорные цементы

     Кислотоупорные цементы состоят из смеси водного раствора силиката натрия (растворимого стекла), кислотоупорного наполнителя и добавки – ускорителя твердения. В качестве микронаполнителя используют кварц, кварциты, андезит, диабаз и другие кислотоупорные материалы; ускорителем твердения служит кремнефтористый натрий. Вяжущим материалом в кислотоупорном цементе является растворимое стекло – водный раствор силиката натрия или силиката калия. Отношение числа молекул кремнезема к числу молекул щелочного оксида называется модулем стекла и колеблется для разных видов цемента от 2,5 до 3,5.

     Добавка кремнефтористого натрия также повышает водостойкость и кислотоупорность цемента. Отечественная промышленность выпускает кислотоупорный кварцевый кремнефтористый цемент, состоящий из смеси тонкомолотого чистого кварцевого песка 15–30 % и кремнефтористого натрия – 4–6 % от массы наполнителя.

     Кислотоупорные цементы применяют для футеровки химической аппаратуры, возведения башен, резервуаров и других сооружений химической промышленности, а также для приготовления кислотоупорных замазок, растворов и бетонов. Как указывалось ранее, для приготовления кислотоупорного цемента применяют растворимое стекло. Его получают при сплавлении в течение 7– 10 ч в стекловарочных печах при 1300–1400 °C кварцевого песка, измельченного и тщательно смешанного с кальцинированной содой, сульфатом натрия или с поташом.

     Твердеет растворимое стекло (довольно медленно) только на воздухе, вследствие выделения и высыхания аморфного кремнезема под действием углекислоты воздуха. Однако глубина проникания углекислоты сравнительно невелика и положительное ее действие наблюдается только на поверхности.

     Ускоряет твердение растворимого стекла добавка катализатора – кремнефтористого натрия Na SiF . Последний вступает во взаимодействие с растворимым стеклом, в результате чего быстро образует гель кремнекислоты – клеящее вещество, что приводит к быстрому твердению системы.

Портландцемент

     Портландцемент – гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Клинкером называется спекшаяся сырьевая смесь в виде зерен размером до 40 мм; от его качества зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях. Для регулирования сроков схватывания в обычных цементах марок 300–500 при помоле к клинкеру добавляют гипс в количестве не менее 1,0 % и не более 3,5 % от массы цемента в пересчете на ангидрид серной кислоты S0 , а в цементах высокомарочных и быстротвердеющих – не менее 1,5 % и не более 4,0 %. Портландцемент выпускают без добавок или с активными минеральными добавками.

     Качество клинкера зависит от его химического и минералогического составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и С0 , а глина – из различных минералов. В процессе обжига сырьевой смеси удаляется С0 , а оставшиеся четыре оксида образуют клинкерные минералы. Содержание оксидов в цементе примерно следующее: 64–67 % СаО, 21–24 % Si0 , 4–8 % А1 0 , 2–4 % Fe 0 . Кроме указанных основных оксидов в портландцементном клинкере могут присутствовать MgO и щелочные оксиды, которые снижают качество цемента. Оксид магния, обожженный при температуре около 1500 °C, при взаимодействии с водой очень медленно гасится и вызывает появление трещин в уже затвердевшем растворе или бетоне, поэтому его содержание в портландцементе не должно быть более 5 %. Наличие в цементе щелочных оксидов свыше 1 % может вызвать разрушение отвердевшего бетона.

     Указанные выше основные оксиды находятся в клинкере не в свободном виде, а образуют при обжиге четыре основных минерала, относительное содержание которых в портландцементе следующее (%): трехкальциевый силикат (алит) – 45–60; двухкальциевый силикат (белит) —20–35; трехкальциевый алюминат – 4—12; четырехкальциевый алюмоферрит – 10–18.

     Алит — основной минерал клинкера, быстро твердеет и практически определяет скорость твердения и нарастания прочности портландцемента. Он представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2–4 %) других примесей, которые могут существенно влиять на структуру и свойства портландцемента. Белит – второй по важности и содержанию силикатный минерал клинкера, медленно твердеет и достигает высокой прочности при длительном твердении. Белит в клинкере представляет собой твердый раствор двухкальциевого силиката и небольшого количества (1–3 %) др. примесей. В связи с тем, что белит при медленном охлаждении клинкера теряет вяжущие свойства, это явление предотвращается быстрым охлаждением клинкера.

     Содержание минералов-силикатов в клинкере в сумме составляет около 75 %, поэтому гидратация алита и белита в основном определяет свойства портландцемента. Трехкальциевый алюминат при благоприятных условиях обжига образуется в виде кубических кристаллов. Он очень быстро гидратирует и твердеет. Продукты гидратации имеют пористую структуру и низкую прочность. Кроме того, он является причиной сульфатной коррозии цемента, поэтому его содержание в сульфатостойком цементе ограничено 5 %. Четырехкальциевый алюмоферрит – алюмоферритная фаза промежуточного вещества клинкера – представляет собой твердый раствор алюмоферритов кальция разного состава. По скорости гидратации этот минерал условно занимает промежуточное положение между алитом и белитом и не оказывает определяющего значения на скорость твердения и тепловыделение портландцемента.

     На структуру бетона оказывает значительное влияние пористость цементного камня, связанная с начальным содержанием воды в бетонной смеси. Для получения удобной для укладки бетонной смеси в нее вводят в 2–3 раза больше воды, чем требуется на реакцию с цементом. Таким образом, большая часть воды затворения оказывается в свободном состоянии и образует в затвердевшем камне множество мелких пор. Поэтому для получения плотной структуры цементного камня необходимо применять бетонные смеси с минимальным содержанием воды. В результате повышаются прочность и морозостойкость бетона.

     Структура цементного камня, а именно наличие в нем пор и гелеобразного вещества, обусловливает склонность его к влажностным деформациям. При увлажнении он разбухает, а при высушивании дает усадку. Знакопеременные сжимающие и растягивающие напряжения, вызываемые изменением влажности окружающей среды, расшатывают структуру цементного камня и понижают прочность бетона. Степень влажностных деформаций зависит от соотношения гелеобразных и кристаллических фаз в цементном камне. С увеличением последней стойкость камня в таких условиях, называемая воздухостойкостью, повышается. В отличие от рассмотренных далее пуццолановых портландцементов, обыкновенный портландцемент отличается высокой воздухостойкостью. Расширение и растрескивание цементного камня могут вызвать также свободные СаО и MgO, присутствующие в цементе при низком качестве обжига. Гашение их сопровождается значительным увеличением в объеме, и продукты этого гашения разрывают цементный камень.

     Прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40x40x160 мм и при сжатии их половинок, изготовленных из раствора состава 1:3 (по массе) с нормальным песком при водоцементном отношении 0,4 и испытанных через 28 суток; образцы в течение этого времени хранят во влажных условиях при температуре 20±2 °C. Предел прочности при сжатии в возрасте 28 суток называется активностью цемента.

     Влияние влажности и температуры среды. Большое влияние на рост прочности цементного камня оказывают влажность и температура среды. Скорость химических реакций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Твердение цементного камня на практике может происходить в широком диапазоне температур: нормальное твердение – при температуре 15–20 °C, пропаривание – 80–90 °C, автоклавная обработка – до 170–200 °C, давление пара – до 0,8–1,2 МПа и твердение – при отрицательной температуре.

     Продолжительность хранения . Длительное хранение цемента даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После трех месяцев хранения потеря активности цемента может достигать 20 %, а через год – доходить до 40 %. Цементы более тонкого помола теряют больший процент активности, так как влага воздуха, соприкасаясь с цементом, вызывает преждевременную его гидратацию. Восстанавливать активность лежалого цемента можно вторичным помолом. Наиболее эффективен вибродомол цемента, в процессе которого повышается тонкость помола цемента, а также происходит обдирка гидратных и инертных оболочек с цементных зерен. Наиболее целесообразным методом предотвращения потери активности цемента является гидрофобизация.

     Стойкость цементного камня . Бетон в инженерных сооружениях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Среди компонентов бетона цементный камень наиболее подвержен развитию коррозионных процессов. Для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть коррозие-, морозо– и атмосферостойким.

     Морозостойкость . При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в лед, который увеличивается в объеме примерно на 9 % по сравнению с объемом воды. Лед давит на стенки пор и разрушает их. Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцементного отношения. До определенной тонкости помола (5000–6000 см /г) морозостойкость цемента увеличивается, но при дальнейшем возрастании тонкости помола она падает. Это объясняется пористой структурой новообразований цемента сверхтонкого измельчения.

     Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие их высокой пористости и низкой морозостойкости продуктов взаимодействия добавок с компонентами цементного камня.

     Увеличение водоцементного отношения понижает морозостойкость цементного камня вследствие повышения его пористости. Надо иметь в виду, что замораживание цементного камня в начальный период твердения является наиболее опасным, так как он еще не обладает достаточной прочностью и не может энергично сопротивляться действию льда.

Специальные виды цемента

     Быстротвердеющий портландцемент (БТЦ)  – портландцемент марок М400 и 500 с минеральными добавками, отличающийся повышенной прочностью через 3 суток твердения. БТЦ обладает более интенсивным, чем обычный, нарастанием прочности в начальный период твердения. Это достигается путем более тонкого помола цемента (до удельной поверхности 3500–4000 см /г), а также повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината (60–65 %). В остальном свойства этого семейства не отличаются от свойств портландцемента. БТЦ применяют в производстве железобетонных конструкций, а также при зимних бетонных работах. Ввиду повышенного тепловыделения его не следует использовать в массивных конструкциях.

     Сульфатостойкий портландцемент применяют для получения бетонов, работающих в минерализованных и пресных водах. Его получают из клинкера нормированного минералогического состава. Введение инертных и активных минеральных добавок не допускается. Этот цемент, являясь по существу белитовым, обладает несколько замедленным твердением в начальные сроки и низким тепловыделением. Сульфатостойкий портландцемент выпускают марки М400. Остальные требования к нему предъявляются такие же, как и к портландцементу.

     Сульфатостойкий портландцемент с минеральными добавками выпускают марок М400 и 500. В качестве минеральной добавки вводят гранулированный доменный шлак (10–20 % от массы) или электротермофосфорный шлак или 5—10 % активных минеральных добавок осадочного происхождения (кроме глиежа).

     Пуццолановый портландцемент производят марок М300 и 400. Его получают путем совместного помола клинкера и 25–40 % от массы цемента активных минеральных добавок и гипсового камня. Клинкер для пуццоланового цемента не должен содержать более 5 % MgO. В остальном свойства его не отличаются от свойств портландцемента.

     Белый портландцемент получают из сырьевых материалов, имеющих минимальное содержание окрашивающих оксидов (железа, марганца, хрома). В качестве сырьевых материалов используют «чистые» известняки или мраморы и белые каолиновые глины, а в качестве топлива – газ или мазут, не загрязняющие клинкер золой. При этом помол такого цемента более тонкий, чем обычного портландцемента. Тонкость помола должна быть такой, чтобы при просеивании сквозь сито с сеткой № 008 проходило не менее 88 % массы просеиваемой пробы. Основным свойством белого цемента, определяющим его качество как декоративного материала, является степень белизны. По этому показателю его подразделяют на три сорта: I, II и III. По прочности белый цемент выпускают марок М400 и 500.

     Начало схватывания белого цемента должно наступать не ранее 45 мин, конец – не позднее 12 ч. Транспортируют и хранят белый цемент только в закрытой таре.

     Цветные портландцементы получают путем совместного помола клинкера белого цемента с устойчивыми к действию света и щелочей минеральными красителями: охрой, железным суриком, ультрамарином, оксидом хрома, сажей. Эффективное окрашивание дают оксиды хрома (желто-зеленый цвет), марганца (голубой или бархатно-черный), кобальта (коричневый). При этом получают цементы редких цветов, трудно достигаемых при смешивании с пигментами. Цветные цементы производят трех марок: М300, 400 и 500.

     Белые и цветные цементы применяют для изготовления цветных бетонов, растворов отделочных смесей и цементных красок.

     Тампонажные цементы на основе портландцементного клинкера по составу, в зависимости от содержания и вида добавок подразделяются на бездобавочный, портландцемент с минеральными добавками и цемент со специальными добавками, регулирующими свойства цемента. Тампонажные цементы применяют для цементирования нефтяных газовых и специальных скважин. Тампонажный портландцемент бездобавочный применяют в условиях нормальных и умеренных температур (15—100 °C) и нормальной плотности цементного теста (1650–1950 кг/м ). Требования по устойчивости к воздействию агрессивных пластовых вод и объемным деформациям при твердении не предъявляются. К портландцементам с минеральными добавками или со специальными добавками, или в совокупности с минеральными и специальными добавками предъявляются требования по температуре применения, по средней плотности цементного теста и устойчивости тампонажного камня к агрессивности пластовых вод (сульфатная, кислая, углекислая, сероводородная, магнезиальная и полиминеральная).

Добавки для цементов

     Добавки для цементов классифицируют по отношению к свойствам цемента и назначению. По этим показателям добавки делят на следующие группы:

     1) компоненты вещественного состава (активные минеральные добавки), изменяющие наименование цементов и обладающие гидравлическими свойствами;

     2) наполнители, улучшающие зерновой состав цемента и структуру цементного камня, не обладающие или частично обладающие гидравлическими свойствами;

     3) технологические – интенсификаторы помола, регулирующие основные свойства цемента: сроки схватывания, твердение, прочность цемента, пористость цементного камня (воздухововлекающие), пластичность цементно-песчаного раствора и бетона (пластифицирующие добавки), водоудерживающую способность, уменьшающие смачивание водой поверхности частиц цемента (гидрофобизующие добавки);

     4) регулирующие специальные свойства цемента: тепловыделение, объемные деформации, коррозионную стойкость, декоративные свойства и др.

     В современной технологии производства бетона широко используют поверхностно-активные добавки в количестве 0,05—0,3 % от массы цемента.

     К гидрофильным добавкамотносится сульфитно-дрожжевая бражка (СДБ), которая улучшает смачивание частиц цемента водой, при этом ослабляются силы взаимного сцепления между частицами вяжущего, повышаются пластичность цементного теста и подвижность бетонной смеси.

     К гидрофобизующимдобавкам относятся мылонафт, асидол, синтетические жирные кислоты и их соли и кремнийорганические жидкости (ГКЖ-10, ГКЖ-11, ГКЖ-94).

     Мылонафт – натриевое мыло нафтеновых кислот. Синтетические жирные кислоты изготовляют путем окисления парафина. Жидкости ГКЖ-10 и ГКЖ-11 представляют собой водно-спиртовые растворы метил– и этилсиликоната натрия, способные смешиваться с водой. Кремнийорганическая жидкость ГКЖ-94 – продукт гидролиза этилдихлорсилана, ее применяют в виде водной эмульсии. К добавкам-микропенообразователям относятся абиетат натрия и омыленный древесный пек. Первый препарат получают омылением канифоли едким натром, а омыленный древесный пек представляет собой нейтрализованные щелочью смоляные кислоты древесного пека хвойных пород. Комплексные добавки обычно состоят из гидрофилизующих и гидрофобизующих поверхностно-активных веществ.

     Синтетические химические добавки– суперпластификаторы (С-3, 40–03 и др.) – в последнее время получают все большее применение. Они оказывают повышенное пластифицирующее действие на бетонные смеси, улучшают структуру и повышают прочность и морозостойкость бетона. Пластифицированный портландцемент отличается от обыкновенного содержанием поверхностно-активной пластифицирующей добавки. СДБ в количестве до 0,25 % (в расчете на сухое вещество) повышает подвижность и удобность укладки бетонной смеси и придает затвердевшим бетонам высокую морозостойкость. В качестве пластифицирующих добавок применяют СДБ, которую можно вводить как при помоле цемента, так и непосредственно в бетонную смесь во время ее приготовления.

     Гидрофобный портландцемент отличается от обыкновенного наличием различных поверхностно-активных гидрофобизующих добавок: мылонафта, асидола, асидол-мылонафта, олеиновой кислоты или окислительного петролатума, нафтеновой кислоты и ее солей, синтетических жирных кислот и их кубовых остатков, кремнийорганических полимеров и др. Эти вещества вводят в количестве 0,1–0,2 % от массы цемента в расчете на сухое вещество добавки. Гидрофобизующие добавки образуют на зернах цемента тонкие (мономолекулярные) пленки, уменьшающие способность цемента смачиваться водой. Такой цемент, находясь во влажных условиях, сохраняет активность и не комкуется. В то же время в процессе перемешивания бетонной смеси адсорбционные пленки сдираются с поверхности цементных зерен и не препятствуют нормальному твердению цемента.

     В процессе приготовления бетонов некоторые гидрофобизующие добавки вовлекают в бетонную смесь большое количество мельчайших пузырьков воздуха – до 30–50 л на 1 м бетонной смеси (3–5 % по объему). Вовлеченный воздух или, если нет добавочного воздухововлечения, адсорбционные слои, активные в смазочном отношении, улучшают подвижность и удобство укладки смеси, а наличие в отвердевшем бетоне мельчайших замкнутых пустот способствует повышению морозостойкости бетона. Гидрофобный цемент отличается и более высокими водостойкостью и водонепроницаемостью.

Цементы с минеральными добавками

     К этой группе гидравлических вяжущих веществ принадлежат цементы, получаемые совместным помолом портландцементного клинкера и активной минеральной добавки или тщательным смешиванием указанных компонентов после раздельного измельчения каждого из них. В зависимости от вида исходного вяжущего компонента и добавки цементы с активными минеральными добавками делят на пуццолановые и шлакопортландцементы.

     Активными минеральными (гидравлическими) добавками называют природные или искусственные вещества, которые при смешивании в тонкоизмельченном виде с известью-пушонкой и затворении водой придают ей гидравлические свойства, а при смешивании с портландцементом повышают его водостойкость. Гидравлические добавки в порошкообразном состоянии, будучи смешаны с водой, самостоятельно не затвердевают. Активные минеральные добавки подразделяют на природные и искусственные.

     Активные минеральные добавки содержат вещество, способное в обычных условиях вступать в химическое взаимодействие с гидратом оксида кальция и давать труднорастворимые продукты реакции. В диатомитах, трепелах и других добавках осадочного происхождения этим веществом является водный кремнезем, а в вулканических и искусственных – преимущественно алюмосиликаты.

     Минеральная добавка считается активной, если она обеспечивает схватывание теста, приготовленного на основе добавки и извести-пушонки, не позднее 7 суток после затворения и обеспечивает водостойкость образца не позднее 3 суток после конца его схватывания. Активность минеральных добавок характеризуется также количеством СаО, поглощенного из раствора на 1 г добавки в течение 30 суток. Отдельные виды минеральных добавок имеют активность не менее (мг/л): трепелы и диатомиты – 150, трассы – 60, пемзы, туфы, пеплы – 50, глиежи – 30.

     Пуццолановый портландцемент — гидравлическое вяжущее вещество, получаемое путем совместного тонкого измельчения клинкера, необходимого количества гипса (до 3,5 %) и активной минеральной добавки или тщательным смешиванием раздельно измельченных тех же материалов. Добавок вулканического происхождения – обожженной глины, глиежа или топливной золы – вводят 25–40 % от массы цемента, а добавок осадочного происхождения диатомитов, трепелов – 20–30 %. В зависимости от активности гидравлической добавки и минералогического состава клинкера учитывается соотношение между ними. Чем активнее добавка, тем больше она способна связывать гидраты оксида кальция и тем меньше потребуется ее в пуццолановом портландцементе, и наоборот.

     Водопотребность пуццолановых портландцементов с плотными и твердыми добавками (трассы, туфы) почти такая же, как и у портландцемента, а при использовании мягких пористых добавок (диатомитов и трепелов) значительно увеличивается. По этой причине необходимая подвижность бетонной смеси обеспечивается более высокой добавкой воды, что вызывает, соответственно, увеличение расхода цемента, чтобы не снизить прочность бетона. Сроки схватывания и тонкость помола пуццоланового цемента такие же, как и для обыкновенного портландцемента, однако пуццолановые портландцементы характеризуются замедленным нарастанием прочности в начальный период твердения по сравнению с портландцементом без добавок, изготовленным из того же клинкера. Пуццолановый портландцемент выпускают марок М200, 300, 400.

     При твердении пуццоланового портландцемента происходят два процесса:

     1) гидратация минералов портландцементного клинкера;

     2) взаимодействие активной минеральной добавки с гидратом оксида кальция, выделяющимся при твердении клинкера. При этом Са(ОН) связывается в нерастворимый в воде гидросиликат кальция.

     В результате пуццолановый портландцемент оказывается более водостойким, чем обыкновенный портландцемент. При схватывании и твердении пуццоланового цемента выделяется меньше тепла, что позволяет использовать этот цемент для массивных бетонных конструкций. Непригоден пуццолановый портландцемент для изготовления элементов, предназначенных служить в условиях попеременного систематического увлажнения и замораживания или высушивания. Пуццолановые цементы имеют меньшую водопроницаемость, чем портландцемент. Объясняется это набуханием добавки, уплотняющей бетон. Их целесообразно применять для подводных и подземных бетонных и железобетонных конструкций, особенно тогда, когда от бетонов требуется большая водонепроницаемость и высокая водостойкость.

Шлаковые цементы

     Шлаковые цементы являются разновидностью цементов с активными минеральными добавками, в которых последние представлены доменными гранулированными шлаками. Утилизация доменных шлаков для получения цемента – это один из примеров рационального и массового применения отходов производства.

     Доменные шлаки представляют собой вторичный продукт (отход), получаемый при выплавке чугуна из руд. По химическому составу доменные шлаки приближаются к портландцементу и состоят в основном из трех оксидов: СаО, Si0 и 90–95 % А1 0 .

     Быстротвердеющий шлакопортландцемент, в отличие от обычного шлакового цемента, характеризуется более интенсивным нарастанием прочности в начальный период. Для получения быстротвердеющего шлакопортландцемента применяют клинкер быстротвердеющего цемента и доменные шлаки высокой активности.

     Твердение шлакопортландцемента может быть разделено на два процесса: первичный – гидратация и твердение клинкерной части цемента и вторичный – химическое воздействие продуктов гидратации клинкерной части с доменными гранулированными шлаками. При гидратации трехкальциевого силиката клинкера происходит выделение гидрата оксида кальция, взаимодействующего с глиноземом и кремнеземом шлака и образуются гидросиликаты и гидроалюминаты кальция. По сравнению с портландцементом шлакопортландцемент характеризуется замедленным нарастанием прочности в начальные сроки твердения, но марочная и последующие его прочности примерно одинаковы. С понижением температуры прирост прочности шлакопортландцемента сильно снижается. Повышенная температура при достаточной влажности среды оказывает на твердение шлакопортландцемента более благоприятное влияние, чем на портландцемент.

     По пределу прочности при сжатии и изгибе шлакопортландцемент делят на три марки: М300, 400 и 500. Быстротвердеющий шлакопортландцемент М400 должен иметь в трехсуточном возрасте предел прочности при сжатии не менее 20 МПа и на изгиб не менее 3,5 МПа.

     Водостойкость бетонов на шлаковых цементах выше, чем на портландцементе, что объясняется отсутствием свободного гидрата оксида кальция. В шлакопортландцементном бетоне он связан шлаком в труднорастворимые гидроалюминаты и низкоосновные гидросиликаты кальция, тогда как в портландцементном бетоне гидрат оксида кальция в значительном количестве содержится в свободном виде и может вымываться, ослабляя бетон. Шлако-портландцементный бетон обладает удовлетворительной морозо– и воздухостойкостью, однако он все же менее стоек, чем бетон на портландцементе.

     Применяют шлакопортландцемент в гидротехнических сооружениях, а также в конструкциях, находящихся в условиях влажной среды. Не следует использовать этот цемент в конструкциях, подвергающихся частому замораживанию и оттаиванию, увлажнению и высыханию. Быстротвердеющий шлакопортландцемент эффективно применяют в производстве железобетонных изделий, подвергающихся тепловлажностной обработке.

Гипсоцементно-пуццолановое вяжущее

     Это вяжущее получают тщательным смешиванием 50–70 % полуводного гипса с 15–25 % портландцемента и 10–25 % активной минеральной добавки, содержащей кремнезем в активной форме, диатомит, трепел, опоку, активные вулканические породы, глины, обожженные при 600–700 °C, и т. п.

     Гипсоцементно-пуццолановые вяжущие (ГЦПВ) применяют для устройства оснований полов, панелей для внутренних стен, для изготовления санитарно-технических кабин и других изделий.

     Прокатные панели основания пола изготовляют из бетона на гцпв с плотностью 1300 кг/м и пределом прочности при сжатии не менее 7 МПа. Панели армируют деревянным каркасом. Эти панели обладают хорошими теплоизолирующими свойствами.

Глиноземистый цемент

     Глиноземистым цементом называют быстротвердеющее (но нормально схватывающееся) гидравлическое вяжущее вещество, получаемое при тонком измельчении обожженной до плавления (или спекания) сырьевой смеси бокситов и извести с преобладанием в готовом продукте низкоосновных алюминатов кальция. Для интенсификации процесса помола клинкера допускается введение технологических добавок до 2 %, не ухудшающих качество цемента и снижающих его стоимость. Глиноземистый цемент производят трех марок: М400, 500 и 600.

     В состав клинкера этого цемента входят низкоосновные алюминаты, при этом главной составной частью является одно-кальциевый алюминат Са0-А1 0 . При затворении порошка глиноземистого цемента водой образование пластичного теста, последующее его уплотнение и твердение протекают аналогично обыкновенному портландцементу. Однокальциевый алюминат при взаимодействии с водой гидратируется, образуя в конечном итоге двухкальциевый восьмиводный гидроалюминат и гидрат оксида алюминия. В дальнейшем происходят уплотнение геля двухкальциевого гидроалюмината и кристаллизация продуктов гидратации. Уплотнение и кристаллизация геля глиноземистого цемента протекают очень интенсивно, что обеспечивает быстрое нарастание прочности. Примерно через 5–6 ч прочность глиноземистого цемента может достичь 30 % и более от марочной, через сутки твердения – свыше 90 %, а в 3-суточном возрасте – марочной прочности.

     По величине предела прочности при сжатии глиноземистый цемент делят на три марки: М400, 500 и 600. Для определения марки испытывают на сжатие половинки образцов-балочек размером 40x40x160 мм, твердеющие 3 суток в нормальных условиях. Начало схватывания глиноземистого цемента должно наступать не ранее 30 мин, а конец – не позднее 12 часов.

     Наиболее благоприятными для твердения глиноземистого цемента являются влажные условия и нормальная температура 20±5 °C. Нарастание прочности цемента в условиях температуры выше 25 °C уменьшается, возможно даже ухудшение достигнутой прочности и разрушение бетона в результате перекристаллизации двухкальциевого гидроалюмината в трехкальциевый. Такое явление называют «болезнью глиноземистого цемента». Поэтому пропаривание изделий на глиноземистом цементе не допускается. При температуре ниже нормальной и близкой к нулю твердение глиноземистого цемента происходит удовлетворительно, что объясняется его высокой экзотермией. В течение 1–3 суток твердения он выделяет в 1,5–2 раза больше тепла, чем портландцемент. Большое тепловыделение ограничивает применение глиноземистого цемента в массивных конструкциях, так как разогрев бетона внутри массива и охлаждение его снаружи вызывают растягивающие напряжения в наружных слоях и образование трещин.

     Применение глиноземистого цемента существенно ограничивается его стоимостью (он в 3–4 раза дороже портландцемента), хотя по своим физико-химическим свойствам (скорости твердения, стойкости в различных средах) он превосходит все другие вяжущие вещества, в том числе и портландцемент. Применяют глиноземистый цемент в тех случаях, когда наиболее рационально используются его специфические свойства, например при срочных восстановительных работах (ремонт плотин, дорог, мостов, при срочном возведении фундаментов). Химическая стойкость глиноземистого цемента делает целесообразным его использование для тампонирования нефтяных и газовых скважин, на предприятиях пищевой промышленности, на травильных и красильных предприятиях, для футеровки шахтных колодцев и туннелей. Глиноземистый цемент по сравнению с другими вяжущими обладает стойкостью против действия высоких температур (1200–1400 °C и выше), что позволяет использовать его для изготовления жаростойких бетонов, применяемых в качестве футеровки тепловых аппаратов.